

Ertapeném: características farmacológicas únicas entre os carbapenêmicos

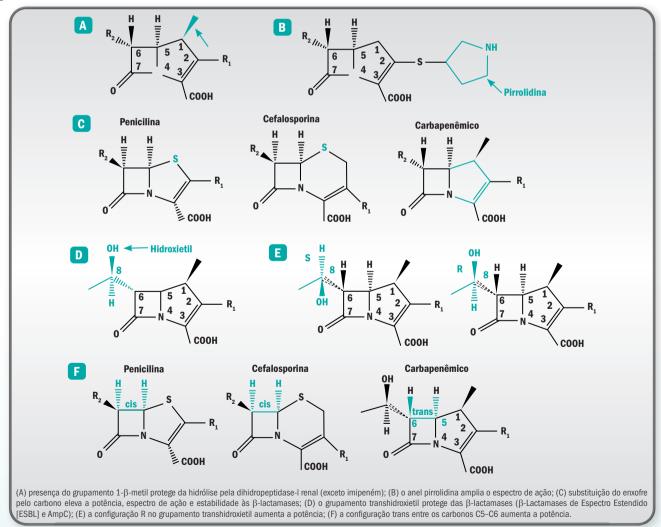
Prof. Dr. James Albiero CRF-PR 4.855

Ertapeném: características farmacológicas únicas entre os carbapenêmicos

Prof. Dr. James Albiero

CRF-PR 4.855

Farmacêutico Clínico, Especialista em Farmacologia, Mestre e Doutor em PK/PD de Antimicrobianos, Estágio em *Stewardship* de Antimicrobianos no Hospital da Universidade do Sul da Califórnia (LA-USA), Professor de Especializações em Farmácia Clínica, Sócio Diretor e Consultor da Albiero & Meyer Serviços de Farmácia Clínica e Hospitalar Ltda


Introdução

Os benefícios dos carbapenêmicos, como elevada potência, amplo espectro de ação e estabilidade às betalactamases, colocam esses agentes como uma das mais importantes classes no arsenal antimicrobiano. Entre os β -lactâmicos, os carbapenêmicos possuem o mais amplo espectro, incluindo anaeróbios, maior potência contra patógenos Gram-positivos e Gram-negativos, e

destacada estabilidade à hidrólise das betalactamases de espectro estendido (ESBL) e AmpC, sendo considerados normalmente antimicrobianos de último recurso para pacientes críticos, ou contra infeccões causadas por bactérias multirresistentes.¹

Embora apresentem estrutura molecular semelhante à das penicilinas e cefalosporinas, algumas diferenças justificam suas prerrogativas (Figura 1).¹

Figura 1. Estrutura molecular dos betalactâmicos.

Elaborada a partir de Papp-Wallace KM et al., 2011.1

Os carbapenêmicos são divididos em dois grupos: 2

- Grupo 1, agente de amplo espectro com mínima atividade contra patógenos não fermentadores (ex.: ertapeném);
- Grupo 2, agentes de amplo espectro e ativos contra os patógenos não fermentadores P. aeruginosa e Acinetobacter spp (ex.: meropeném, imipeném + cilastatina).

Farmacodinâmica (PD)

Como outros β-lactâmicos, os carbapenêmicos ligam-se às proteínas ligadoras de penicilinas (PBPs) e impedem a produção de peptideoglicano, formando assim uma parede celular incompleta, frágil e inviável. A elevada afinidade por diversas PBPs justifica sua rápida e potente ação bactericida, diferente das cefalosporinas e penicilinas, que possuem afinidade primária pela PBP-3.3

Estudos em Enterobacteriacea demonstram que o ertapeném liga-se às PBPs-1 (a, b), 2, 3, 4 e 5. Em relação à PBP-2, o ertapeném tem potência similar ao imipeném, mas é 30 vezes mais potente que a ceftriaxona. Já quanto a PBP-3, o ertapeném é similar à ceftriaxona e 60 vezes mais potente que o imipeném.

Embora a inclusão da cadeia lateral de ácido benzoico (Figura 2) tenha fornecido vantagens farmacocinéticas ao ertapeném, dificultou sua penetração na membrana dos patógenos não fermentadores (*P. aeruginosa*, *A. baumannii*), contra os quais não está indicado.²

Farmacocinética (PK)

A biodisponibilidade oral dos carbapenêmicos é insignificante, obrigando o uso apenas da via parenteral. O ertapeném

Figura 2. Estrutura molecular do ertapeném.

Elaborada a partir de El-Gamal MI et al., 2017.2

é mais flexível e pode ser administrado pelas vias intramuscular (IM) e intravenosa (IV). No entanto, imipeném + cilastatina pode ser usado por ambas as vias (desde que liberado pelo fabricante), e o meropeném somente pela via IV. A longa cadeia lateral do ertapeném (Figura 2) fornece maior lipossolubilidade e alta ligação proteica (85%-94%), proporcionando tempo de meia-vida ($T_{1/2}$ V) mais longo (\approx 4 horas) e regime posológico mais conveniente com apenas uma dose ao dia. O curto $T_{1/2}$ V do meropeném e imipeném + cilastatina (\approx 1 hora) exige regimes posológicos com 3-4 doses ao dia para pacientes com função renal normal. 2,3 Como esses agentes são excretados principalmente pela via renal, as doses diárias devem ser ajustadas diante de insuficiência renal. conforme descrito na tabela 1. $^{4-6}$

Carbapenêmico	Dose diária plena	Dose na disfunção renal	
Ertapeném	 > 12 anos - 1 g/dia 3 meses ≤ 12 anos - 15 mg/kg a cada 12 horas - não exceder 1 g/dia 	Adultos - CL _{cr} ≤ 30 mL/min e HD 0,5 g/dia Pediatria - Dados não estabelecidos	
Meropeném	> 12 anos - 0,5 g - 2 g a cada 8 h 3 meses ≤ 12 anos (≤ 50 kg) - 10 - 40 mg/kg a cada 8 h	$ \begin{array}{l} \textbf{Adultos} \\ - \text{CL}_{cr} 26 - \leq 50 \text{ mL/min} - 1 \text{ dose a cada } 12 \text{ h} \\ - \text{CL}_{cr} - 10 - \leq 25 \text{ mL/min} - 1/2 \text{ dose a cada } 12 \text{ h} \\ - \text{CL}_{cr} < 10 \text{ mL/min} - 1/2 \text{ dose a cada } 24 \text{ h} \\ \textbf{Pediatria} \\ - \text{Dados não estabelecidos} \\ \end{array} $	
Imipeném + Cilastatina	Adultos - 0,25 g - 1 g a cada 6 - 12 h - máximo 4 g/dia Pediatria: (≥ 3 meses e Cr _{sérica} ≤ 2 mg/dL) - Crianças (≥ 40 kg) - Doses de adultos Crianças (< 40 kg) - 15 mg/kg a cada 6 h (máximo 2 g/dia)	Adultos - $CL_{cr} 41 - ≤ 70 \text{ mL/min} - 0,25 - 0,75 \text{ g a cada } 6 - 8 \text{ h}$ - $CL_{cr} 21 - ≤ 40 \text{ mL/min} - 0,25 - 0,5 \text{ g a cada } 6 - 12 \text{ h}$ - $CL_{cr} 6 - ≤ 20 \text{ mL/min} - 0,25 - 0,5 \text{ g a cada } 12 \text{ h}$ - $CL_{cr} < 5 \text{ mL/min} - Não indicado$ Pediatria - C , sérica > $2 \text{ mg/dL} - Não indicado$	

CL_a: *clearance* de creatinina; Cr_{sérica}: creatinina sérica; HD: hemodiálise. Elaborada a partir de bula de Invanz^{®,4} bula de Meronem^{®,5} imipeném e cilastatina.⁶ Para os antimicrobianos tempodependentes como os carbapenêmicos, as estratégias de administrá-los por infusões contínuas ou estendidas podem fornecer benefícios clínicos

Farmacocinética/Farmacodinâmica (PK/PD) do ertapeném e outros carbapenêmicos

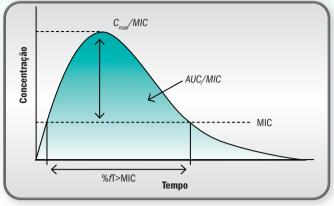
Os conceitos de PK/PD explicam muito bem a ação diferenciada entre antimicrobianos e mostram como explorar os agentes para melhor otimizá-los. Nesse contexto, os antimicrobianos expressam ação por meio de um dos três índices farmacodinâmicos:⁷

- a) razão da concentração máxima pela concentração inibitória mínima ($C_{\rm max}/MIC$);
 - b) razão da área sob a curva de 24 horas pela MIC (AUC/MIC);
- c) porcentagem do tempo entre as doses em que a concentração livre permanece sobre a MIC (%fT>MIC) (Figura 3).

A ação dos carbapenêmicos é expressa pelo índice %fT>MIC, e seus regimes posológicos devem alcançar valores ≥ 40% para fornecer maior probabilidade de sucesso terapêutico.⁷

O regime posológico do ertapeném de apenas 1 g ao dia alcança valores (%fT>MIC: >40%) contra a $\rm MIC_{90}$ da maioria dos patógenos indicados, conforme demonstrado por Burkhardt et al.8

Esse estudo, que avaliou 17 pacientes críticos com pneumonia associada a ventilação mecânica precoce tratados com ertapeném 1 g ao dia, demonstrou que a fração livre do carbapenêmico permaneceu sobre a MIC de 1 mg/L por mais de 9,6 horas (40% de 24 horas) (Figura 4), e forneceu assim cobertura contra a MIC $_{90}$ de todos os patógenos apresentados na tabela 2, chegando alcançar \approx 16 h sobre o valor de *breakpoint* sensível (MIC \leq 0,5 mg/mL) estabelecido pelo BrCast. 3,9,10


Essa cobertura %fT>MIC: > 40% aconteceu mesmo com alterações significantes na farmacocinética dos pacientes, com aumento no volume de distribuição e *clearance* e redução na C_{max} e área sob a curva do ertapeném, levando o autor a recomendar a avaliação da posologia em pacientes críticos com hipoalbuminemia acompanhada de boa função renal.8

Infusão do ertapeném

Para os antimicrobianos tempo-dependentes como os carbapenêmicos, as estratégias de administrá-los por infusões contínuas ou estendidas podem fornecer benefícios clínicos, porque normalmente aumentam o valor do índice %fT>MIC.⁷

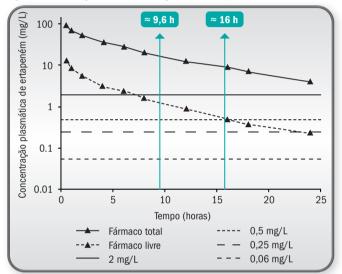

Breilh et al. 11 avaliaram 20 pacientes sépticos usando regime de ertapeném 1 g ao dia, separando-os em grupos de infusão em *bolus* (IB) por 0,5 h ou infusão contínua por 24 horas (IC). Entretanto, os resultados clínicos dos dois grupos foram semelhantes, sendo concluído que embora os pacientes do grupo IC apresentassem maior período com concentrações sobre a MIC, o prolongado $T_{1/2}V$ do ertapeném e as baixas MICs dos patógenos contribuíram para uma boa cobertura farmacodinâmica mesmo com o regime em IB. Como regra geral, espera-se que a infusão estendida ou

Figura 3. Gráfico de concentração x tempo, demonstrando os três índices de PK/PD: C__/MIC; AUC/MIC: %fT>MIC.

Adaptada de Asín-Prieto E et al., 2015.7

Figura 4. Concentração total e concentração livre do ertapeném.

Elaborada a partir de Burkhardt O et al., 2007.3

Tabela 2. Atividade in vitro do ertapeném contra bactérias Gram-positivas, Gram-negativas e anaeróbias

Patógenos	MIC ₅₀ (mg/L)	MIC ₉₀ (mg/L)
S. aureus (oxacilina-sensível)	0,12	0,25
S. pyogenes	0,008	0,03
S. pneumoniae	0,03	0,5
Enterobacter aerogenes	0,06	0,5
*E. coli (ESBL)	0,03	0,38
*K. pneumoniae (ESBL)	0,125	0,5
Morganella morganii	0,03	0,12
Serratia marcescens	0,03	0,12
Bacteroides fragilis	0,25	1
Clostridium perfringens	0,06	0,06
Peptostreptococcus spp	0,06	0,5

^{*}Isolados clínicos coletados em serviços de saúde brasileiros; MIC₅₀ e MIC₉₀: concentração inibitória mínima para 50% e 90% dos isolados testados, respectivamente.

ESBL: β-Lactamase de Espectro Estendido.

Elaborada a partir de Burkhardt O et al., 2007³ e Kiffer CRV et al., 2006.⁹

contínua dos β -lactâmicos promova benefícios clínicos para agentes de curto $T_{1/2}V$ e contra patógenos com MICs elevadas. ¹²

A importância da hipoalbuminemia e disfunção renal para o ertapeném

Promover regimes seguros é um dos objetivos do uso de antimicrobianos por PK/PD. Considerando que a fração livre do antimicrobiano (desligada das proteínas) é a parte efetiva que elimina o patógeno, mas também é a que atravessa as barreiras teciduais podendo causar toxicidade. Embora a taxa epileptogênica do ertapeném seja das mais baixas entre os agentes carbapenêmicos (< 0,5%), entretanto, devido a sua elevada ligação com albumina, pacientes em condições que favorecem a hipoalbuminemia (ex.: sépticos, desnutridos, idosos, hepatopatas) e combinado com insuficiência renal, estão mais arriscados a desencadear convulsões por esse agente. Sendo assim, nesses pacientes o uso do ertapeném deve ser monitorado, observando-se a presença de estímulos anormais do sistema nervoso central.¹³

Ertapeném e resistência antimicrobiana

Uma preocupação importante dos profissionais clínicos com o uso do ertapeném seria uma possível seleção de patógenos Gram--negativos resistentes aos carbapenêmicos do grupo 2 (imipeném

Referências

- Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. antimicrob agents chemother. 2011;55(11):4943-60.
- El-Gamal MI, Brahim I, Hisham N, et al. Recent updates of carbapenem antibiotics. Eur J Med Chem. 2017;131:185-95.
- Burkhardt O, Derendorf H, Welte T. Ertapenem: the new carbapenem 5 years after first FDA licensing for clinical practice. Expert Opin Pharmacother. 2007;8(2):237-56.
- 4. Bula de Invanz[®] (ertapeném sódico). Anvisa. Disponível em: http://www.anvisa.gov.br/datavisa/fila_bula/frmVisualizarBula.asp?pNuTransacao=23904302016&pldAnexo=3954808>.
- Bula de Meronem® (meropeném). Anvisa. Disponível em: http://www.anvisa.gov.br/datavisa/fila_bula/frmVisualizarBula.asp?pNuTransacao=13422802018&pldAnexo=10967329.
- Bula de imipeném e cilastatina. Anvisa. Disponível em: http://www.anvisa.gov.br/datavisa/fila_bula/frmVisualizarBula.asp?pNuTransacao=2991062019&pIdAnexo=11123048>.
- Asín-Prieto E, Rodríguez-Gascón A, Isla A. Applications of the pharmacokinetic/ pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother. 2015;21(5):319-29.
- Burkhardt O, Kumar V, Katterwe D, et al. Ertapenem in critically ill patients with early-onset ventilator-associated pneumonia: pharmacokinetics with special consideration of free-drug concentration. J Antimicrob Chemother. 2007;59(2):277-84.
- Kiffer CRV, Kuti JL, Eagye KJ, et al. Pharmacodynamic profiling of imipenem, meropenem and ertapenem against clinical isolates of extended-spectrum

Os vários benefícios do ertapeném (...) fazem desse carbapenêmico um importante agente de manejo prático para combater infecções em que está indicado^{15,16}

e meropeném), como ocorre com outros agentes como as quinolonas. Esse problema não existe e foi esclarecido pelas revisões realizadas por Falagas et al.¹⁴ e Nicolau et al.,¹⁵ que não mostraram aumento de resistência com a introdução do ertapeném em hospitais que utilizaram por períodos maiores que dois anos; acontecendo até o inverso em alguns estudos, com melhora da sensibilidade da *P. aeruginosa* aos carbapenêmicos do grupo 2.

Concluindo, os vários benefícios do ertapeném, como alta potência e amplo espectro de ação, incluindo atividade contra cepas produtoras de ESBL e AmpC; possibilidade de uso IV e IM, alcance farmacodinâmico adequado com apenas uma dose ao dia, e não gerar pressão seletiva sobre bactérias não fermentadoras, fazem desse carbapenêmico um importante agente de manejo prático para o tratamento das infecções em que está indicado. Além disso, o ertapeném pode ser usado para descalonar os carbapenêmicos do grupo 2 (na ausência de não fermentadores), além de favorecer os serviços de *home care* e centro de infusões para a desospitalização. 15,16

- β -lactamase-producing Escherichia coli and Klebsiella spp. from Brazil. Int J Antimicrob Agents. 2006;28(4):340-4.
- Brazilian Committee on Antimicrobial Susceptibility Testing (BrCAST). Tabelas de pontos de corte para interpretação de CIMs e diâmetros de halos. Disponível em: www.brcast.org.br/tabela-pontos-de-corte-clinicos-BrCAST-06-02-2019>. Acesso em: 22 mai. 2019.
- Breilh D, Fleureau C, Gordien JB, et al. Pharmacokinetics of free ertapenem in critically ill septic patients: intermittent versus continuous infusion. Minerva Anestesiol. 2011;77(11):1058-62.
- Albiero J, Mazucheli J, Barros JPR, et al. Pharmacodynamic attainment of the synergism of meropenem and fosfomycin combination against Pseudomonas aeruginosa producing metallo-β-lactamase. Antimicrob Agents Chemother. 2019; AAC.00126-19.
- Miller AD, Ball AM, Bookstaver PB, et al. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011 Apr;31(4):408-23.
- Falagas ME, Tansarli GS, Kapaskelis A, et al. Ertapenem use and antimicrobial resistance to group 2 carbapenems in Gram-negative infections: A systematic review. Expert Rev Anti Infect Ther. 2013;11(1):69-78.
- Nicolau DP, Carmeli Y, Crank CW, et al. Carbapenem stewardship: Does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence. Int J Antimicrob Agents. 2012;39(1):11-5.
- Oliveira PR, Carvalho VC, Cimerman S, et al. Recommendations for outpatient parenteral antimicrobial therapy in Brazil. Brazilian J Infect Dis. 2017;21(6):648-55.

